Mark scheme - Transport in Plants

| 2 | | idea of long distance from external surface
 to cells (1)
 small surface area to volume ratio (1)
 diffusion not fast enough (1)
 named example of substance that is
 transported e.g. sucrose (1) | 3 |
| :--- | :--- | :--- | :--- | ALLOW from source to sink / root to leaf etc. \quad (1) | 5 |
| :--- |

2	i	A phloem (1) C xylem (1)	2	
	ii	meristem	1	ALLOW meristematic DO NOT ALLOW stem cells / undifferentiated cells
		Total	3	
$\begin{array}{\|l} 2 \\ 8 \end{array}$	i	DNA / RNA / nucleic acid	1	
	ii	lower / reduce / make more negative	1	
	ii	two from 1 strip is impervious to, water / solutions (1) 2 forces water / solutions, to pass through, plasma / cell surface, membrane (1) 3 p phospholipid (bilayer), repels / AW, ions / charged particles (1)	2	1 IGNORE ref to suberin. The idea of charge / ion impermeability is wanted here. ALLOW answer in terms of ions / charged particles needing channels because

				phospholipid bilayer does not allow charged particles through.
		Total	4	
2	i	water is (a) polar (molecule) \checkmark nitrate (ion) / $\mathrm{NO}_{3}{ }^{-}$, is, charged / negative \checkmark (hydrogen bonds form) between H on water and O on nitrate \checkmark	2 max	Read answer first; if two marks from written response, IGNORE diagram. If two marks not awarded refer to diagram to find additional mark(s). DO NOT ALLOW water is charged ALLOW water has slightly positive / δ^{+}, H IGNORE ' δ - O' if describing water IGNORE ' δ - O' if describing nitrate or on diagram DO NOT ALLOW nitrate is polar IGNORE solid line for H bond on diagram NOTE 'delta plus of water is attracted to negative charge of nitrate' $=2$ marks (MP1 and 2) NOTE the following examples

				$=2$ maks (MP2\&3) $=1$ max (1 PP3 Examiner's Comments The majority of candidates gained the maximum two marks for Q18(c)(i). However, there were those who incorrectly described or drew the bonding between the hydrogen on water and the nitrate ion rather than the oxygen atom of nitrate. Numerous candidates also suggested that the oxygen on the nitrate ion is 'slightly' negative or that nitrate is a polar molecule in an attempt to gain marking point two; neither of these options could be credited. It was noted by Examiners that candidates were often better at expressing their ideas in a diagram rather

				than in written text and many candidates scored the maximum marks from their diagrams.
		solutes / ions / named ion, enter, against concentration gradient / by active transport \checkmark reduces water potential of (endodermal) cell(s) \checkmark water, moves / diffuses, by osmosis / down water potential gradient \checkmark	2 max	ALLOW ψ for water potential throughout DO NOT ALLOW ref to concentration of water in mps 2 or 3 ALLOW 'pumped' as AW for active transport ALLOW water potential of cell(s) becomes more negative ALLOW from high to low water potential Examiner's Comments Q18(c)(ii) was surprisingly challenging despite the desired responses being fairly straightforward. Good responses clearly indicated that active transport of mineral ions or solutes into the endodermis would lead to water entering by osmosis. A large number of incorrect responses were seen which referred to water being actively transported or water moving down a concentration gradient.
		Total	4	
0		$\begin{aligned} & \mathrm{M}=\text { xylem } \checkmark \\ & \mathrm{N}=\text { phloem } \checkmark \end{aligned}$	2	DO NOT ALLOW xylem, vessels /elements DO NOT ALLOW phloem, sieve tubes / companion cells IGNORE vascular tissue Examiner's Comments The majority of candidates correctly identified tissues M and N . In some cases, candidates made reference to vessels, elements or sieve tubes which were not given credit as these are cells rather than tissues.
		Total	2	
3 1	a	D1 put, (leaf) stalk(s) / petiole(s), in, dye / stain / food colouring \checkmark	2	IGNORE any observations D1 ACCEPT ‘stick' for ‘stalk'

				plant. Some candidates only mentioned that mosses live in damp places.
		Total	4	
		B comment about detail of organelles (1) comment about shapes of cells (1)	2	No Mark for identification of B e.g. light microscope would not allow nuclear pores / ribosomes / endoplasmic reticulum / plasmodesmata to be seen. e.g. sieve tube elements are angular / hexagonal.
		the ability to see more detail / separate two objects (1)	1	
		Nile blue (1) ii i to increase contrast / to make nuclei visible / to show no nuclei in sieve tubes (1)	2	
		Total	5	
3		lateral movement of water	1	
		Total	1	
5	a	P1 do not allow air to enter, cut end / shoot \checkmark E1 prevent airlock / ensures continuous column of water \checkmark OR P2 keep named abiotic factor constant / AW \checkmark E2 affects, rate of transpiration / evaporation of water \checkmark OR P3 keep screw clip closed \checkmark E3 prevents entry of water whilst measuring / AW $\sqrt{ }$	$\begin{gathered} \max 2 \\ (\mathrm{AO} 1.2) \end{gathered}$	1 mark for precaution and 1 mark for corresponding explanation P1 ALLOW method that prevents entry of air, e.g. cutting / assembling under water P1 IGNORE do not introduce air bubbles into the capillary tube. P2 e.g. temperature / humidity
	b	FIRST CHECK ON ANSWER LINE If answer = 2.3 award 2 marks $S D=2.30217 \checkmark$ Correct answer to 2 s.f. \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2.8) \end{gathered}$	ALLOW for 1 mark 2.30
		data for 'fan off' are, more spread out about the mean / less precise \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 3.2) \end{gathered}$	ALLOW data were less repeatable ALLOW ora for 'fan on'

	c i	flatten / AW, leaves (on to graph paper) \checkmark account for / AW, partially covered squares \checkmark double leaf area to give total of both surfaces / AW \checkmark	$\begin{gathered} \max 2 \\ (\mathrm{AO} 2.6) \end{gathered}$	ALLOW e.g. only count squares more than 50\% covered
		FIRST CHECK ON ANSWER LINE If answer $=4.9 \times 10^{-2}$ award 2 marks $30 \mathrm{~mm}^{3} \mathrm{~min}^{-1}=1800 \mathrm{~mm}^{3} \mathrm{hr}^{-1}=1.8 \mathrm{~cm}^{3}$ hr^{-1}, $\begin{aligned} & 1.8 \div 37=0.0486=4.9 \times 10^{-2} \mathrm{~cm}^{3} \mathrm{hr}^{-1} \mathrm{~cm}^{-2} \\ & \sqrt{ } \end{aligned}$	$\begin{gathered} 2 \\ (\mathrm{AO} 2.6 \\ \mathrm{AO} 2.6) \end{gathered}$	Must be 2SF and standard form for 2 marks If answer is incorrect ALLOW for 1 mark $0.049 / 0.0486$
		Total	9	
		In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics): award the higher mark where the - Communication Statement has been met. award the lower mark where aspects of - the Communication Statement have been missed. - The science content determines the level. - The Communication Statement determines the mark within a level. Level 3 (5-6 marks) Full and detailed plan of how to carry out a valid investigation into the rate of transpiration. There is a well-developed plan and	6	Indicative scientific points may include... IGNORE potometer set up detail These are not mark points See appendix Method and planning to obtain valid data - method described - movement of bubble in potometer / mass measured - timing distance travelled by bubble - repeating investigation with two different plant species - repetition to gain replicates - calculation (rate / mean) - statistical test Variables - named variables controlled e.g. temperature humidity light wind movement surface area of leaves - how variables are controlled Examiner's Comments This Level of Response question assessed AO3 and practical skills in the context of

		sequence as well as an appreciation of the need to obtain valid data. The information presented is relevant and clearly explained. Level 2 (3-4 marks) Detailed plan of how to carry out a valid investigation into the rate of transpiration. There is a reasonable explanation and sequence as well as an appreciation of the need to obtain valid data. The information presented is in the most-part relevant and well-explained. Level 1 (1-2 marks) Response is aware of how to plan a valid investigation. The information is basic and communicated in an unstructured way. The information is supported by limited method which may be unclear. 0 marks No response worthy of credit NR No response		using a bubble or mass potometer. Good Level 3 responses could explain the basic principles, the need to control variables, and mentioned performing replicates for both species of plants. Many went on to describe relevant calculations for processing the data obtained. Level 2 responses described a basic method with less attention given to processing the data obtained. Some lower level responses described the wrong apparatus with mention of counting oxygen bubbles or measuring volumes in a gas syringe. It was important that candidates followed the instruction that advised "Details of how to set up a potometer are not required" to avoid writing irrelevant material. Some candidates also forgot to mention how to measure the rate of transpiration i.e. by measuring the distance travelled by the bubble or meniscus in a fixed time interval. Exemplar 2 Set.up the potomeksax and measure the rave of bronspermsin by meassining the olsitance the ciupble has moned at regular sintervals. Repent The empeniment at least three thines......nis , Mril ablow yan ko identryy anomothis and take a mean. Pemaps plot a oproph so the resusts ean be compared , vinally (urithtune on.... the n-amis and distanse manered, by bubsblem. Fhe. y-annis. Make sure that the sospersisine x ...ns eamied ant at the srams temperature, pemaps in a themsostatically controul ram. nomeneme. the light intensity, is the Bame, pemaps bywsing a hompp watingonse power or chosing the bluinds.." 13 So mly the nom light has an impast. Mne supaue $[6]$ area of the lely used for eand spenes should be the some so try and use a beasper similar sized leay. This is a good example of a Level 3 six mark response. The candidate provided a concise, well-written response to the question in the available space provided.
		Total	6	
7	a	P1 some water vapour not condensed \checkmark S1 (so) record mass of bag \checkmark P2 water accumulating in bag / AW, reduces	$\begin{gathered} 4 \text { max } \\ (\mathrm{AO} .3) \\ (\mathrm{AO} 3.4) \end{gathered}$	Mark first two problems and solutions only Mark as pairs of answers \mathbf{P} for problem and \mathbf{S} for suggested improvement

transpiration \checkmark
S2 record for, shorter time / less than 6 hours \checkmark

P3 not all (liquid) water enters syringe as some left in the bag $\sqrt{ }$
S3 record mass of bag before and after experiment $\sqrt{ }$

P4 time of day / temperature / light intensity, not controlled \checkmark
S4 do all experiments at the same, time of day / temperature / light intensity \checkmark

P5 paperclip seal not completely airtight (water vapour might escape) \checkmark
S5 use, elastic band / sticky tape, to seal bag on leaf \checkmark

P6 insufficient time for water to accumulate
\checkmark
S6 leave for longer time \checkmark

P7 leaves of different size \checkmark
S7 pick similar sized leaves / measure leaf area and divide \checkmark

ALLOW e.g. record for 1 hour

ALLOW not all water collected from bag

IGNORE measure leaf surface area

Examiner's Comments

In this question candidate's understanding of what constitutes a problem (or limitation) in the procedure was unclear, as were their suggestions for modifications. Many candidates suggested a new completely different procedure rather than modifying the one given to reduce the limitations. When writing an alternative method, candidates could follow the lead given in the PAGs and write numbered steps rather than full prose.

OCR support

The Practical skills handbook provides support with practice exam questions relating to limitations in practical skills. It can be found at
https:/www.ocr.org.uk/Images/294468-
biology-practical-skills-handbook.pdf

b	conclusion there is (probably) no (significant) difference between the transpiration rates of tomato and water melon leaves \checkmark because difference in, water collected / transpiration rate, between tomato and watermelon very small \checkmark standard deviations (very) large / data very spread out $\sqrt{ }$	2 max (AO3.1/ 3.2)	ALLOW only $0.008 \mathrm{~cm}^{3}$ difference 'for very small' ALLOW error bars / standard deviations overlap ALLOW SD for standard deviation ALLOW range bars overlap Examiner's Comments Candidates often did not make full use of the information provided in the stem of questions. Many candidates seemed to struggle when faced with extracting information from a graph. For example in this question the small difference between the means and the huge overlap of the error bars was ignored. In this question almost all candidates did not correctly interpret the relevance of error bars that were very large and had a large overlap between two sets of data. Large error bars suggest data that is variable (and perhaps not easily repeatable). While it is not a significance test in itself, the degree of overlap between error bars can be a good indicator that two sets of data are not significantly different. Misconception Where two sets of data appear to be only slightly different a statistical significance test can help to determine whether the difference is significant. Statistical data such as the standard deviation can also help to indicate the significance of a small difference between sets of data.

	c	1 ref. potometer airtight / watertight $\sqrt{ }$ 2 dry leaves \checkmark 3 cut shoot under water / slanted cut \checkmark 4 measure distance air bubble travels per (named) time interval OR Measure time for air bubble to travel known distance $\sqrt{ }$ 5 calculate volume of water uptake \checkmark 6 ref. maintaining (named) constant conditions \checkmark	$\begin{gathered} 4 \max \\ (\mathrm{AO} 1.2) \end{gathered}$	ALLOW use ALLOW set ALLOW use measureme ALLOW use distance (to	Vaseline potometer un correct unit to eg. $\mathrm{mm} \mathrm{min}^{-1}$ $\mathrm{r}^{2} /$ cross sect culate water	er water indicate nal area x take)
		Total	10			
3	a	differences completed correctly \checkmark squares of differences completed correctly \checkmark	2	IGNORE all negative signs in Difference of ranks column DO NOT ALLOW negatives in Difference squared column ALLOW ECF for mp 2		
				Rank of hair density	Difference in ranks (d)	Difference squared (d^{2})
				2	2	4
				1	0	0
				7	0	0
				10	0	0
				4	4	16
				3	0	0
				8	1	1
				6	0	0
				9	(-)7	49
				5	0	0
				Examiner's Comments Candidates were asked to complete the table by making a number of simple		

			calculations. Most able candidates did this succesffully. A number of candidates were unable to rank the hair density correctly and therefore the difference in ranks was incorrect. These candidates could still achieve a mark if they correctly squared the difference they had calculated. A few made errors in calculating the square of the difference.
b			ALLow ECF from table ALLOW one mark for working
bii			

			that leaf hairs could reduce water loss. They also understood that this was required because there was less water available further from the river. Less able candidates often became confused and wrote about leaf hairs absorbing water from the less humid environment. Some even seemed to think that leaves closer to the river had more hairs which helped the leaf to lose water. Exemplar 7 In this exemplar the candidate has written a clear and concise response. It shows a clear understanding that water is less available further away from the river and that the leaf hairs will reduce transpiration. The candidate goes on to explain that transpiration is loss of water vapour via the stomata.
	same / similar, size / age, trees \checkmark same / similar, size / age, leaves \checkmark repeated leaves from each tree and calculate mean \checkmark record results at same, time of year / day \checkmark ensure leaves selected are from, same side / same height / evenly distributed around tree \checkmark systematic sampling / sample at set distances (from river) / described \checkmark	3 max	Examiner's Comments This question asked for candidates to describe ways to improve the validity of their sampling techniques. Validity is all about controlling the variables around the collection of data so that the data are not affected by inconsistencies. The technique is valid if it measures what it is supposed to measure. There was a wide range of responses. It was clear that many candidates did not really understand the meaning of the term 'validity'. Few candidates achieved full credit and many responses described ways to improve repeatability. In many cases the responses were not well phrased. Exemplar 8

			Suggest three ways in which the students could improve the validity of their sampling ${ }^{\text {menond }}$ Use leaves from the samu height from the treens 2 Use similar size treesy - Use sinntias leaves of a similar area. In this exemplar the candidate has given three clear statements. Each statement describes a way to remove a variable to ensure the data collected are comparable. This makes the sampling techniques valid.
	their conclusion is incorrect \checkmark reject (the student's), hypothesis / H1 \checkmark there is no, relationship / correlation, (between leaf hair density and distance from river) / the pattern seen is due to chance \checkmark	2 max	ORA accept the null hypothesis / H_{0} Examiner's Comments Candidates were asked to evaluate a conclusion. It was clear that many candidates did not really know how to interpret the results of a statistical test. If the calculated value of Spearman's rank is below the critical value then we can say that there is no correlation. Many candidates seemed to suggest that because the calculated value was close to the critical value that was OK. Less able candidates become very confused and compared the calculated value to 5% or even to 9 . Definitions of the terms associated with practical work are available in the practical skills handbook. Exemplar 9 value so there isn't a ko slignificant Coreelation and it many be due to [2] This exemplar shows a rare case where the candidate has a good understanding of how to interpret the results of a statistical test. The candidate makes clear that the calculated result is below the critical value and states that this means there is no significant correlation.
	Total	11	

3		B	1	Examiner's Comments This was another question that drew upon the candidates' practical skills. Again, it might have been that some candidates misread the question and suggested a precaution that is needed, accounting for the incorrect answers seen.
		Total	1	
4	a	two from units on axes (1) plotted points (1) title (1)	2	
		$=5.25\left(\mathrm{~mm} \mathrm{~min}^{-1}\right)(1)(1)$	2	ALLOW answer in range 5.0 to $6.0(\mathrm{~mm}$ min^{-1}) ALLOW one mark for correct working if final answer incorrect e.g. $\frac{21-0}{4}$
	b	evaporation (1) from upper leaf surfaces (1)	2	
	c	two from not all lower leaf surface covered (1) leaks in apparatus (1) shoot not cut under water (1) error in reading position of meniscus (1)	2	e.g. seal around the plant is not airtight.
		Total	8	
1		symplast pathway passing through the cytoplasm / plasmodesmata \checkmark apoplast pathway passing, along / between, the cell walls \checkmark vacuolar pathway passing through the vacuoles \checkmark	$\begin{gathered} 2 \max \\ (\mathrm{AO} 1.2) \end{gathered}$	ALLOW 1 mark for two named pathways even if descriptions not given or incorrect ALLOW 1 mark for two correct descriptions even if names not given
		Total	2	
2	a	find/control/tandardise/account for, leaf area calculate / compare, transpiration rate per unit area \checkmark	$\begin{gathered} 2(\mathrm{AOO} 3 . \\ 3 \\ \mathrm{x} 2) \end{gathered}$	ALLOW unit for 'area' e.g. $\mathrm{mm}^{2} / \mathrm{cm}^{2} / \mathrm{m}^{2}$ IGNORE size/number of stomata IGNORE surface area to volume ratio ALLOW water, loss/uptake, for 'transpiration' ALLOW mm²/cm²/m² for 'unit area' Examiner's Comments

bany candidates wrote about a selection of			
b			

				Most candidates identified the anomaly clearly and stated that including it made the mean higher. Many candidates gained full marks by performing a relevant calculation of the mean without the anomaly, or the difference between this and the existing mean.
	ii	bubble was not (fully) returned to starting position or misread, scale / ruler / distance or timed for longer than five minutes or air movement / temperature / light increased \checkmark	$\begin{gathered} \text { 1(AO3. } \\ \text { 1) } \end{gathered}$	ALLOW leaf not fully covered with petroleum jelly Examiner's Comments This question was widely misunderstood. Candidates gave a reason based on the difference of the anomalous number from the other readings to explain how they made their choice, rather than a reason based on a problem in the conduct of the experiment.
		$6.63 \checkmark \checkmark \checkmark$	$\begin{gathered} 3 \\ (\mathrm{AO} 2.4 \\ \mathrm{x} 3) \end{gathered}$	Correct answer $=\mathbf{3}$ marks even if no working shown. ALLOW answer in table 4.2 ALLOW close figure showing, rounding error / error due to rounding during calculation, but deduct 1 mark If final answer incorrect award $\mathbf{2}$ marks for: Award 1 mark if two errors occur: wrong answer not to 2 d.p: 33 / 33.2 / 27 / 26.5 / or more d.p. diameter used \& 5 mins: 132.63 If no calculated answer then award 1 mark for working: $\left(3.14 \times 0.35^{2}\right) \times(86.2 \div 5)$ or $\left(3.14 \times 0.35^{2}\right) \times 17.24$

$\left.\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{l}\text { ALLow } \pi \text { for 3.14 } \\ \text { Examiner's Comments }\end{array} \\ \text { Candidates were mostly successful in } \\ \text { tackling this calculation. Candidates who } \\ \text { used the diameter rather than the radius } \\ \text { gained 2 marks, if the rest of the steps in } \\ \text { their working were correct. Some candidates } \\ \text { did not convert the data from Table 4.1 into } \\ \text { a value for one minute rather than five; error } \\ \text { carried forward marks were again given. The } \\ \text { final answer should have been given to two } \\ \text { decimal places to math the rest of the data } \\ \text { in Table 4.2. Candidates were given full } \\ \text { credit for using a more precise value of } \pi \\ \text { than 3.14, such as 22/7 or the } \pi \\ \text { calculator. }\end{array}\right\}$

			Examiner's Comments Candidates struggled to express a reason why the capillary tube was better. Correct ideas mostly focused on the greater degree of measuring precision allowed. It was not correct to relate the different apparatus to greater accuracy.
ii			

Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer.
Then, award the higher or lower mark within the level, according to the Communication
Statement (shown in italics):

- caward the higher mark where the Communication Statement has been met.
- award the lower mark where aspects of the Communication Statement have been missed.
- The science content determines the level.
- The Communication Statement determines the mark within a level.

Level 3 (5-6 marks)

A detailed description and explanation of the precautions needed when setting up and using the apparatus.
There is a well-developed line of reasoning which is clear and logically structured. All the information presented is relevant and substantiated.

Level 2 (3-4 marks)

A basic description and explanation of the precautions needed when setting up and using the apparatus.

OR

A detailed description and explanation of the precautions needed when setting up or using the apparatus.
There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

Level 1 (1-2 marks)

A description of some of the precautions needed when setting up and using the apparatus.
There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

- E so no air can enter, stem / shoot / xylem / apparatus
- E air / bubble, could block xylem
- E obtain a continuous column of water
using:
- D do not allow the bubble to move too far
- D use syringe to move bubble
- E so air bubble does not enter, xylem / stem
- E so same air bubble can be reused
- D place open end in water
- E so no, air / (new) bubble, introduced
- D keep shoot, still / supported
- E to avoid breaking, seal / water column
- E to measure transpiration accurately
- E ensure validity

Allow gas for 'air' throughout. Ignore oxygen.
Ignore air / bubbles being present or leaving.
Examiner's Comments

Most candidates made some relevant points about the precautions to be taken when setting up the apparatus. Candidates did not complete their answer by describing and explaining the precautions that should be taken while actually using the apparatus to measure the rate of transpiration. This restricted many answers to Level 1.

Exemplar 3

		0 marks No response or no response worthy of credit.		Firsthy, the sterm eg the plowt murst be cuts undermater, so thate hos bubbles gatistos the stem. The appantans showl alrobie set us \cdots on the ploat inserted randerunater So that no oir geets niter the tutas Whar y lusing the appountrus, the epperxite enit tr the tribes to the end with to es plant is Shand remain follyz Submerfed in whetre so thror hor unnanted air bubleder eter fore protrmetes. The trip chrould eluse be wred tos reset the air bubble and sta it fyen fereuthnin the 16 sters of the plont. The gpperoturs Should also be kept \& uprughti Onet the rublese tubnes secured tionth whe settio up the apparatas. Exemplar 3 provides a full treatment of both aspects of the question, and the reason for each described precaution is clearly explained in terms of preventing entry of air.
		Total	18	
4 3	i	hydrophyte	1	
	ii	\mathbf{X} symplast (1) Y apoplast (1)	2	
		Total	3	
4 4		B	$\begin{gathered} 1 \\ (\mathrm{AO} 1.2) \end{gathered}$	
		Total	1	
5	i	temperature (1) humidity (of air) (1) air currents (1) light intensity (1) idea of health of leaves (1)	2	DO NOT ALLOW species of leaves DO NOT ALLOW surface area IGNORE age of leaf (as this is correlated with surface area) IGNORE air bubbles in potometer, etc. DO NOT ALLOW 'warmth' or 'heat' ALLOW water (vapour) potential DO NOT ALLOW 'moisture' or 'water levels' alone ALLOW wind ALLOW 'leaves should not be damaged'
	ii	high rate of transpiration does not matter because:	1	IGNORE references to hydrophyte adaptations

	(plant lives in an) aquatic / AW habitat, so water lost is easily / AW, replaced (1)		
	Total	3	
4	respiration produces, carbon dioxide / CO_{2}, that is used in photosynthesis \checkmark photosynthesis produces, oxygen / O_{2}, that is used in respiration \checkmark dead leaves / decomposition, replaces (named) nutrients \checkmark	$\begin{gathered} \max 1 \\ (\mathrm{AO} 2.5 \\ \mathrm{AO} 2.5) \end{gathered}$	
	because they are xerophytes \checkmark because the conditions are too, moist / wet \checkmark	$\begin{gathered} \max 1 \\ (\mathrm{AO} 2.1 \\ \mathrm{AO} 2.1) \end{gathered}$	ALLOW suited to / live in, dry environments IGNORE hot environment
	Total	2	
	there is a lower water potential inside root hair (cells) \checkmark actively transport / pump, (mineral) ions / salts, into root hair(s) (cells) or root hair(s) (cells) store / contain, (mineral) ions / salts / solutes \checkmark	2	IGNORE ref to large surface area and short diffusion path IGNORE ref to solute potential / isotonic ACCEPT ψ for water potential 'it' or 'they' = root hairs IGNORE ref to roots or root cells unqualified as hairs ACCEPT root hair, has / creates, a lower water potential (than soil) ACCEPT maintains / sets up / establishes, a (steep) water potential gradient Look for a comparison in water potential between the cell and the soil IGNORE solutes / sugars / hydrogen ions ACCEPT named ions ACCEPT named ions ACCEPT named solutes e.g. sugars Examiner's Comments This question highlighted the failure of many candidates to use the correct scientific terminology. In particular was the use of 'concentration gradient' without showing an appreciation of, or even mentioning, water potential, despite the previous parts of the question being on that subject. Where active

				transport was mentioned some thought it was the water that was pumped into the cell or that transpiration was also involved. Many candidates understood the principal of reducing the water potential of the root hair cells but failed to gain credit by referring to the roots or the plant without specifying the 'root hair cells'. They also talked about the large surface area of root hair cells, which also failed to gain credit.
		Total	2	
4 8		no / thin, (waxy) cuticle and idea that wax production is a waste (1) large surface area to, increase / maximise, photosynthesis, as transpiration is not an issue (1) many stomata to, increase / maximise, gas exchange (1) stomata on the top surface, as gas concentration is higher in air than water (1)	2	ALLOW stomata do not close at night to maximise gas exchange
		Total	2	
		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics): - award the higher mark where the Communication Statement has been met. - award the lower mark where aspects of the Communication Statement have been missed. - The science content determines the level. - The Communication Statement determines the mark within a level. Level 3 (5-6 marks)	$\begin{gathered} 6 \\ (\mathrm{AO} 1.1) \end{gathered}$	Indicative scientific points may include Phloem loading - Glucose is converted to an assimilate / sucrose in photosynthesising cells - Apoplast route - Active process - Proton pump in companion cells - H^{+}concentration gradient - Co-transport of H^{+}and sucrose into companion cell - Structural adaptations of companion cells, e.g. many mitochondria, increase surface area of cell surface membranes - Passive loading via symplast route - Role of plasmodesmata - entry of sucrose / solutes decreases water potential of phloem / sieve elements - water enters phloem from surrounding cells / xylem - results in higher hydrostatic pressure

	different - one of transport in phloem can take place in different directions and transport in xylem only takes place up the plant (1) phloem carries carbohydrates and xylem does not (1) phloem transport uses living cells and xylem does not (1) xylem uses, capillary action / cohesion and adhesion, and phloem does not (1)		
i	certain parts can store and then release carbohydrates when needed (1) suitable examples include root or leaf, which can act as sink or source at different times of year (1)	2	
	* Level 3 (5-6 marks) A clear, thorough explanation, showing a good understanding of the principles of loading into phloem, incorporating use of the diagram. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) A partial explanation showing some understanding of the principles of loading into phloem. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) An attempt including some correct principles, but likely to be confused, showing limited understanding of the principles of loading into phloem. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks	6	Relevant principles include: - sucrose pumped into companion cell - by active transport - $\mathrm{H}+$ / proton, co-transport of sucrose - B / sucrose diffuses into phloem sieve tube - A / water, enters sieve tube from companion cell - C / water, enters sieve tube from xylem - increased pressure forces flow of sap down phloem - through the pores in the sieve plates.

		No response or no response worthy of credit.		
	c i	glycosidic	1	
	ii	two from $19 \times$ greater in modified (1) 1811% increase in modified compared with unmodified (1) standard deviation indicates greater spread of data for modified (1)	2	
		two from sucrose unloaded at sinks and invertase converts sucrose into, glucose / monosaccharide (1) increases sucrose concentration gradient between phloem and sink (1) causes increased unloading of sucrose from phloem (1) two from increases solute gradient between source and sink (1) removal of water from phloem increases pressure gradient between source and sink contributes to increased movement in phloem (1)	4	
	i	modified produce fewer and larger tubers (1) ora modified produce greater mass of tuber (1) ora 109.34 g for modified and 89.04 g for not modified (1)	3	
$\begin{aligned} & 5 \\ & 1 \end{aligned}$		Total	22	
		Phloem = B AND contains sucrose / non-reducing sugar \checkmark non-reducing sugar / sucrose, hydrolysed / broken down, to monosaccharides \checkmark Liver $=\mathrm{A}$ AND does not contain starch / gives negative result for iodine test \checkmark	3	ALLOW non-reducing sugars broken down to, reducing sugars / named monosaccharide ALLOW 'colour after iodine added was yellow' Examiner's Comments

				Many candidates identified tissue B as phloem since it contained sucrose, or a nonreducing sugar, which would result in a red precipitate with Benedict's reagent after treatment with hydrochloric acid. Fewer mentioned that this treatment would hydrolyse sucrose into its monosaccharide constituents. Some candidates lost the mark for stating that sucrose is a reducing sugar. Most candidates correctly identified tissue A as liver due to the fact that it contained no starch resulting in a negative result for the iodine test. Lower ability candidates identified C as the liver stating that it would contain both glycogen and reducing sugars such as glucose, but ignoring the fact that tissue C also contained starch.
		Total	3	
5	a	BCJ	2	One mark for each correct answer e.g. $B C=2 \quad B$ or C (only) $=1 \quad B \quad D^{\boldsymbol{X}}=1$ If one extra incorrect letter $=\max 1$ If two extra incorrect letters $=0$ marks e.g. B C D $\boldsymbol{X}=1$ B C D $\boldsymbol{X} E \boldsymbol{x}=0$
		ADF $\sqrt{ } \sqrt{ }$		If any incorrect or extra letters are written, cross each one. e.g. A D EX Then look at any correct letters written. We have 1 cross so only 1 more mark available, A and D both right so gets this 1 mark) e.g. A D EX CX We have 2 crosses so 0 marks even though the correct letters have also been given If no extra or incorrect letters are written: Three answers written, all correct $=2$ marks A, D, F = 2 Two answers written, both correct = 1 mark $A, D=1 \quad A, F=1 \quad D, F=1$ One answer written and correct $=0$ $A=0 \quad F=0 \quad D=0$

				OCR support The Maths for Biology website provides support on calculating surface area and use of units: https:/www.ocr.org.uk/subjects/biology/math s-for-biology/index.aspx-id=biology-a-h020-h420-from-2015
	i	$12.1 \checkmark \checkmark \checkmark$	3	Max 2 if answer not given to 1 decimal place. If answer is incorrect ALLOW 1 mark for evidence of correct mean calculation: 36 or 36.2 Examiner's Comments Most candidates gained 1 mark for correctly calculating the mean at 36.2. Many were also able to use the formula to calculate the standard deviation correctly although a significant number of candidates gave up after calculating the mean. In common with other calculations on this examination paper the most frequent reason for loss of marks was incorrect rounding. Candidates should be reminded to round their final answer rather than rounding earlier in the calculation. All processed data is recorded to up to one significant figure more than the raw data. OCR support The maths skills handbook is provided on the OCR website: https:/www.ocr.org.uk/Images/294471-biology-mathematical-skills-handbook.pdf
	ii	(students) (unpaired) t -test \checkmark	1	DO NOT ALLOW paired t-test Examiner's Comments Judging by the number of crossed-out alternatives seen on scripts, candidates

			brown as a negative result with iodine. The use of acid or a named acid in the test for sucrose was also widely known. OCR support Qualitative testing for glucose and sucrose is covered in this activity: https:/www.ocr.org.uk/qualifications/as-a-level-gce-biology-a-h020-h420-from-2015/delivery-guide/module-ba02-module-2-foundations-in-biology/delivery-guide-badg001-cell-structure-211\#373046
b	starch: is not soluble / does not dissolve (in water) or does not affect osmosis / is osmotically inactive or cannot, enter / leave, cells \checkmark makes, it / sap, thick / viscous / sticky / gluelike $\sqrt{ }$	$\begin{gathered} \text { max } 1 \\ \text { (AO2.5 } \\ \text { x2) } \end{gathered}$	ALLOW could block, tubes / flow / phloem ALLOW $\mathrm{H}_{2} \mathrm{O}$ would not follow to, increase hydrostatic pressure / set up pressure gradient ALLOW no co-transporter proteins for starch OR starch is too big to, enter cells / cross cell (surface) membranes / pass through cell wall IGNORE big / too big, unqualified Examiner's Comments Correct answers mostly related to starch being insoluble. Many candidates referred to starch being big but did not consider why this would cause a transport problem, e.g. by making the sap more viscous or by causing a problem in loading the molecule into companion cells. Some candidates did gain credit for saying that as starch is big it could block the holes in sieve plates.
	sucrose: entry / exit / loading / unloading, controlled / uses transport proteins or (is) less likely to, leave / exit / diffuse out of (sieve tubes) or (is) less, reactive / likely to be used (in respiration / by mitochondria / for energy) \checkmark	1	ALLOW ora throughout for glucose ALLOW co-transporters for 'transport protein' DO NOT ALLOW channels / pores IGNORE ref. osmosis / size / solubility / metabolically inactive

			(AO2.5)	Examiner's Comments This 'suggest' question posed a challenge to candidates. Many responses showed little relevant knowledge of the differences between sucrose and glucose or how they gain access to phloem sap. Correct answers usually focused on glucose being more likely to be used up or to be lost by diffusion during the transport process. A few candidates applied their knowledge of how substances enter and leave the phloem by co-transporters at companion cell membranes to think of a difference in the transport possibilities of glucose and sucrose.
	Total	$\mathbf{7}$		

